Cohomology of Modules Over -categories and Co--categories
نویسندگان
چکیده
منابع مشابه
Free Modules over Cartesian Closed Topological Categories
The construction of free R-modules over a cartesian closed topological category X is detailed (where R is a ring object in X), and it is shown that the insertion of generators is an embedding. This result extends the well-known construction of free groups, and more generally of free algebras over a cartesian closed topological category.
متن کاملCohomology and Tensor Categories
In this research announcement we propose the notion of a supercategory as an alternative approach to supermathematics. We show that this setting is rich to carry out many of the basic constructions of supermathematics. We also prove generalizations of a number of results in equivariant cohomology, including the Chern-Weil theorem for an arbitrary rigid Lie algebra object. For a quadratic Lie al...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملHomological algebra over belian categories and cohomology of F1-schemes
1 Belian categories 3 1.1 Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Diagram chase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Snake Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Delta functors . . . . . . . . . . . . . . . . . . . . ....
متن کاملCohomology in Tensored Categories
Both [Mac Lane 1965, Beck 1967] have recently defined cohomology theories for algebras in abstract categorial setting. Mac Lane’s theory is an abstract formaization of the (normalised) bar construction (see [Mac Lane 1963, p. 144] for example). Since, however, his proof of the normalization theorem (p. 236) remains perfectly valid, the normalized bar construction can be replaced by the un-norma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2019
ISSN: 0008-414X,1496-4279
DOI: 10.4153/s0008414x19000403